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crystallization seen in basalt matrix glasses (following Barclay
and Carmichael 2004 phase relationships, Fig. 13). Elements

more strongly influenced by feldspar, such as Sr and Al2O3,
have a slightly curved evolution supporting such a model.

Davidson et al. (2007) proposed that a zone of amphibole



domes in June and August 2017, were to the north of this
uplifted area (Waythomas et al. 2019a).

The trachyandesite composition of rocks collected
from the base of the uplifted dome, and as ballistics
scattered across the island in August 2018, are a unique
composition from the basalts and trachyte pumice and
are the only erupted material with sanidine-plagioclase-
cristobalite groundmass mineralogy (Fig. 2). Tephra sam-
ples sometimes have identical feldspar-cristobalite matrix
as fresh proximal samples, but also often also include
clay-like mineral compositions of feathery crystalline
growths that could be a result of hydrothermal alteration
and/or glass devitrification (Fig. 3). No glass has been
observed associated with the trachyandesite groundmass
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